Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bioeng Transl Med ; : e10436, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2280439

ABSTRACT

Human cyclophilin A (hCypA) is important for the replication of multiple coronaviruses (CoVs), and cyclosporine A inhibitors can suppress CoVs. The emergence of rapidly spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has sparked concerns that mutations affect the binding ability of the spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) cell receptor, affecting the severity of coronavirus disease (COVID-19). Far-western blotting and surface plasmon resonance (SPR) results revealed that hCypA interacts strongly with the viral SARS-CoV-2 receptor-binding domain (RBD), with a binding affinity of 6.85 × 10-8 M. The molecular interaction between hCypA and the viral protein interface was shown using three-dimensional structural analysis, which revealed the blocking of key residues on the RBD interface by hCypA. The RBD facilitates binding to the ACE2 receptor. The hCypA-S protein complex suppressed the binding of RBD to the ACE2 receptor, which a required event for CoV entry into the host cell. The reliability of this postulated blocking mechanism of the hCypA-SARS-CoV2 RBD complex with ACE was confirmed by SPR and molecular interaction lateral flow (MILF) strip assay, which offers the immunochromatographic signal read-outs. The emergence of new SARS-CoV-2 variants with key mutations in RBD had a negligible effect on the binding of the RBD variants to hCypA, indicating an effective mitigation strategy for SARS-CoV-2 variants. The MILF strip assay results also highlight the neutralizing effect of hCypA by effectively blocking RBD (wild type and its variants) from binding ACE2. Given the importance of hCypA in viral entry regulation, it has the potential to be used as a target for antiviral therapy.

2.
Mol Cell Toxicol ; 18(4): 443-455, 2022.
Article in English | MEDLINE | ID: covidwho-2266512

ABSTRACT

Background: A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective: We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results: For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion: Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review: The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings: Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.

3.
Mol Cell Toxicol ; 18(1): 1-8, 2022.
Article in English | MEDLINE | ID: covidwho-1800291

ABSTRACT

BACKGROUND: mRNA vaccines hold great potential as therapeutic techniques against viral infections due to their efficacy, safety, and large-scale production. mRNA vaccines offer flexibility in development as any protein can be produced from mRNA without altering the production or application process. OBJECTIVE: This review highlights the iterative optimization of mRNA vaccine structural elements that impact the type, specificity, and intensity of immune responses leading to higher translational potency and intracellular stability. RESULTS: Modifying the mRNA structural elements particularly the 5' cap, 5'-and 3'-untranslated regions (UTRs), the coding region, and polyadenylation tail help reduce the excessive mRNA immunogenicity and consistently improve its intracellular stability and translational efficiency. CONCLUSION: Further studies regarding mRNA-structural elements and their optimization are needed to create new opportunities for engineering mRNA vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL